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1§.  Introduction

Let x be an integer. Let the function C(x) be equal to 3x+1 if x is odd and equal to x/2 if x is 
even. Iterating this function from the initial value  1 we get a trivial cycle  {1,4,2}. The  3x+1 
conjecture  asserts  that  starting  from any positive  integer  a1 the  repeated  iteration  of  C(x) 
eventually produces the integer 1, after which the iterates will alternate between the integers of 
the trivial cycle. This assertion posed by L. Collatz in 1937 has turned out to be very hard to 
prove. It has been widely studied in different places all over the world. Besides the Collatz 
problem,  it  has  been  called  by many other  names,  like  3x+1 mapping,  Hasse's  algorithm, 
Kakutani's problem, Syracuse algorithm or problem, Thwaites conjecture, and Ulam's problem. 
In spite of massive try and effort, the Collatz conjecture is still unproven.
 
Number a1 is said to converge if  Ch(a1) = 1  for some positive integer h. In order to prove that 
all positive initial values a1 up to some number R converge, it is sufficient to check that for all 
2 < a1 ≤ R  there exist some integer h such that  Ch(a1) < a1. If Collatz conjecture is not true for 
some integer  a1 we have two possibilities:  Either  1) the sequence starting from  a1 turns to 
infinity or 2) the sequence enters to cycle other than the trivial one  {1, 2, 4}.
 
Until now all numbers up to 204 *  250 ( ≈  2.29 * 1017 ) have been checked for convergence. 
All numbers up to this bound have been verified to converge [7]. In this paper we are going to 
study possible nontrivial cycles in Collatz sequences. If there exists a nontrivial cycle we know 
that every integer belonging to this cycle must be larger than the bound referred to above. 

Lagarias showed in 1985 that there are no nontrivial cycles with length less than 275,000. 

It should be noted that Lagarias used (3x+1)/2 operation instead of 3x+1 operation. This gives 
shorter cycle lengths. We will return to this later.

Our aim in this  paper  is  to  show that  there  are  no nontrivial  cycles  with length  less  than 
1,000,000,000. We also show that only certain discrete values are possible for the cycle lengths 
of the Collatz sequence. 
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2§.  Basic inequalities

LEMMA 1: Let us suppose that there exists an untrivial cycle of length m in some Collatz  
sequence with positive initial value. Let k be the number of 3x+1 operations and n the number 
of  x/2  operations  in  the  cycle.  Hence  k+n=m.  Suppose  that  the  smallest  number  in  the  
sequence is greater than some (with a computer reachable bound) number R. Then
ln(3)/ln(2) < n/k ≤ ln(3+1/R)/ln(2). 

PROOF: Let  c1, c2,...,cm  be the rational integer numbers of the cycle i.e.  ci+1 = C(ci)  for all 
i=1,2,...,m-1 and  c1  = C(cm).  Without restricting the generality we can assume  c1  to be the 
smallest one of them.
 
Let r1, r2,... rk be the ratios of succeeding integers in sequence when 3x+1 operation has been 
used.  Now  r1r2...rk = 2n. 

On the other hand  3 < ri ≤ (3c1+1)/c1 = 3+1/c1 for all i=1,...,k. 

Hence 3k  < 2n = r1r2...rk ≤ (3+1/c1)k , and therefore k ln(3) < n ln(2) ≤ k ln(3+1/c1). 

Consequently  

                                                      )2ln(
)3ln(

 < 
k
n

 ≤ 
)2ln(

)13ln(
1c

+
 .

 
If R ≤ c1 we have 

                                                     )2ln(
)3ln(

 < 
k
n

 ≤ 
)2ln(

)13ln(
R

+
. ÿ

 
Our problem now is to find the rational number n/k such that these inequalities are satisfied and 
n+k is as small as possible.
 
We will show that this follows if the denominator k is the least possible. For this we need some 
results concerning rational approximations.
 

3§.  Results concerning Farey sequences and rational approximations

By  the  Farey  sequence  Fm of  order  m we  mean  the  positive  fractional  numbers,  whose 
denominators do not exceed m, arranged in ascending order of magnitude.
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Let us take some notations and terms in use. If  x is a real number, then  x   is the largest 
integer that is less than or equal to x. Subsequently we define residual function Mod:Z×Z+ → Z 
by setting m = m/n   n + Mod(m,n) for all m ∈  Z, n ∈  Z+. 

If  m and  n are rational integers,  n > 0 and gcd(m,n) = 1,  then using (extended) Euclidean 
algorithm we can find such rational integers a and b, that am+bn = 1. Then am ≡ 1 (mod n). 
Congruence equation mx ≡ 1 (mod n) can hence be effectively solved. This solution is called 
the modular inverse of the number m modulo n. 

A rational number is in reduced form if the greatest common divisor of the numerator and the 
denominator is 1. 

When processing with Farey sequences the following lemma is essential, see [4]. 

LEMMA 2: Let p, q and m be positive integers, q ≤ m and gcd(p,q) = 1. Let r be a modular  
inverse of p modulo q and 

                             q' =  q
rm +

   q – r = m - Mod(m+r,q)  and  p' = q
pq 1'+

.

 
Then 0 < q' ≤ m,  gcd(p',q')=1 and the number p'/q' is the smallest rational number greater  
than p/q and with the denominator ≤ m. 

PROOF: 1) Clearly  q' is a rational integer. Consequently  pq'+1 = p (m+r)/q  q-pr+1 ≡ 0 
(mod q). Hence p' is also a rational integer. 

2) Because of  p'q - pq' = 1  we have gcd(p',q') = 1. Hence number  p'/q'  is in reduced form.
 
3) Multiplying the inequalities
 

                                                   0 ≤ q
rm +

 -   q
rm +

   ≤ q
q 1−

  

by the number q and adding number r we get  r ≤ m+r-q' ≤ q-1+r,  and consequently m+1-q ≤ 
q' ≤ m. 

4) We show that between the rational numbers  p/q  and  p'/q'  there cannot exist any rational 
number having denominator  ≤ m.  Let us suppose that  p/q < s/t < p'/q',   0 < t ≤ m.  Then  sq -  
pt ≥ 1, p't-sq' ≥ 1 and consequently 

                              1 = p'q-pq' = qq' ( '
'

q
p

 - q
p

) =  qq'(( '
'

q
p

 - 
t
s

) + (
t
s

 - q
p

))

                         =  qq'( '
''

tq
sqtp −

+ tq
ptsq −

) ≥   qq'( '
1
tq + tq

1
) = 

t
qq '+

 > 
t
m

 ≥ 1.
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This  is  a  contradiction. Hence  p/q  and   p'/q'  are  successive  rational  numbers  in  Farey 
sequence  Fm. ÿ  

The essential parts of the proof can be found in the book of Hardy and Wright 1938 [3].  The 
preceding computationally useful form is not given, anyway. 

The following lemma can be proved analogously to Lemma 2.

LEMMA 3: Let p,q,m be positive rational integers, q ≤ m and gcd(p,q)=1. Let r be a modular  
inverse of p modulo q and

                              q'' =   q
rm −

  q+r = m-Mod(m-r,q) and  p'' = q
pq 1'' −

.

Then 0 < q'' < m, gcd(q'',p'')=1 and the number p''/q'' is the greatest rational number smaller  
than p/q and with the denominator ≤ m. 

The  preceeding  lemmas  give explicit  expressions  to  the  immediately following and to  the 
immediately preceding numbers of a given number in some Farey sequence. The method is 
based  on  the  modular  arithmetics  and  the  Euclidean  algorithm.  This  method  works  (by 
Mathematica experiments) quite well even with the numbers with 1000-10000 decimal digits. 
 
The Farey sequences have applications  in a very wide area of mathematics.  However,  our 
computationally important explicit results have not been presented, as far as we know, in the 
litterature  of the elementary number  theory,  computational  number  theory or the theory of 
mathematical algorithms.
 
We can now write short Mathematica programs for using lemmas 2 and 3 effectively.

    NextFarey[s_, m_] := 
      First[{p = Numerator[s];
            q = Denominator[s];
            r = First[Part[ExtendedGCD[p, q], 2]];
            q2 = Quotient[m + r, q]*q - r;
            p2 = (p*q2 + 1)/q;
            p2/q2}]

    PreviousFarey[s_, m_] := 
      First[{p = Numerator[s];
             q = Denominator[s];
             r = First[Part[ExtendedGCD[p, q], 2]];
             q2 = Quotient[m - r, q]*q + r;
             p2 = (p*q2 - 1)/q;
             p2/q2}]
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    NextBestUpper[s_] :=
        NextFarey[s, Denominator[s]]

    NextBestLower[s_] :=
        PreviousFarey[s, Denominator[s]]

In the proof of Lemma 2 we have also proved the following Lemma. 

LEMMA 4: (Farey-Cauchy theorem)  If p/q and  p'/q',  where 0 < q, 0 < q' and gcd(p,q) = 
gcd(p',q') = 1, are any successive rational numbers in Farey sequence Fm , then  p'q - pq' = 1. 

Using Farey-Cauchy theorem we can prove the following simple lemma.

LEMMA 5: Let 0 ≤ β  <  α < n/k ≤ β and let k be the least possible positive denominator  
value for which these inequalities are satisfied. Then
a) k > 1,  n/k  is unique and
b) if  c/d, where  d > 1  is any other rational number for which  α < c/d ≤ β then n+k ≤ c+d.

PROOF: a) It’s clear that k > 1. Trivially  k  has a unique value. If  n  is not unique, then 
either 1)  α < j/k < n/k ≤ β  or  2)  α < n/k < j/k ≤ β  for some positive integer  j  for which 
gcd(j,k) = 1.

In case 1)  j/k  and  n/k  are successive rational numbers in order  k  Farey sequence. By the 
Farey-Cauchy theorem  1 = kn - kj = k(n-j) ≥   k.  This is a contradiction.

In case 2)  n/k  and  j/k  are successive rational numbers in order  k Farey sequence.  By the 
Farey-Cauchy theorem  1 =  jk – nk = (j-n)k ≥   k.  This is a contradiction. 

b) By a) we have  α ≥ (n-1)/k  (n is unique)  and by the definition of  k,  d ≥ k .

Hence 

     
d
c

 > α ⇒  c > αd ≥ 
k

n 1−
 d ⇒  ck > (n-1)d ⇒  ck ≥ (n-1)d + 1 ⇒  c ≥ 

k
dn 1)1( +−

   ⇒ c+d ≥ 
k

dn 1)1( +−
 + d ≥ 

k
kn 1)1( +−

 + k = n - 1 + 
k
1

 + k = n+ k - 1 + 
k
1

 > n + k - 1 

                                                   ⇒  c + d ≥ n + k . ÿ
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4§.  Back to the Collatz problem

We are  now ready to  prove  our  main  results  concerning  the  cycle  lengths  of  the  Collatz 
sequences.

THEOREM 1: Let the Collatz conjecture be verified up to some bound R > 1. Let n/k be the  
rational  number  with  least  possible  denominator  k  such  that  ln(3)/ln(2)  <  n/k  ≤ 
ln(3+1/R)/ln(2). Then the least possible cycle length for nontrivial cycle is n+k.

PROOF: Let c be the number of  x/2  operations and d the number of  3x+1  operations in the 
shortest nontrivial cycle.  By lemma 1 we have  ln(3)/ln(2) < c/d ≤  ln(3+1/R)/ln(2).  Let us 
denote  α =  ln(3)/ln(2)  and  β = ln(3+1/R)/ln(2).  Now  

                             1 =   )2ln(
)3ln(

  ≤  
)2ln(

)13ln(
R

+
  = β   ≤   

)2ln(

)13ln(
R

+
 < )2ln(

)4ln(
 = 2.

Necessarily  β  = 1.

Now  0 < 1 = β   <  ln(3)/ln(2) = α < n/k < β.
 
By lemma 5 integers  n  and  k  are unique and  k > 1. Furthermore we have  c+d ≥ n+k.  But 
c + d  equals to the length of the cycle. ÿ

THEOREM 2: The length of any nontrivial cycle in Collatz sequence is at least  
1,027,712,276. 

PROOF: The  20.  convergent  of  ln(3)/ln(2) is  the  first  one  of  them  that  satisfies  our 
inequalities when R = 204*250. It's value is 630,138,897/397,573,379. The closest neighbours 
of  it  in  order  397,573,379 Farey  sequence  are  357,638,239/225,644,606 and 
272,500,658/171,928,773. They don't belong to our interval. So our convergent has the least 
possible denominator in our interval and the sum of its numerator and denominator is the least 
possible length of a nontrivial cycle in Collatz sequence. Now we get m = n + k = 630,138,897 
+ 397,573,379 = 1,027,712,276. ÿ

NOTE 1. Some researchers use  (3x+1)/2  operation instead of  3x+1  operation that we have 
used in the definition of the Collatz sequence. In this case the numbers  3x+1  and following 
(3x+1)/2  are not considered as different iterates of the cycle. This gives shorter cycle lengths. 
It is easy to see that instead of the sum of the numerator and the denominator the cycle length 
is  given by just  numerator  of  our  rational  approximation.   When the operations   x/2  and 
(3x+1)/2  are used the minimal cycle length is hence still at least  630,138,897.

NOTE 2. Tomas Oliveira e Silva has checked the Collatz sequences to converge with all initial 
values  up to  3*253 (≈  2.702*1016  )  [8].   As far  as we know,  his  result  is  the best  one 

7



published in international refereed mathematical journals.  It is easy to see, that this result gives 
exactly the same minimal cycle length as we have reached before.

The  following  table  gives  best  rational  upper  approximations  for  ln(3)/ln(2). If  an 
approximation  is  a  continued  fraction  convergent  its  order  number  is  given  in  the  second 
column. The third column gives the sum of the numerator and the denominator of the rational 
approximation. This is the length of representing cycle of Collatz sequence. The last column 
gives the bound to be reached by computer calculations or by theoretical studies to eliminate 
the possibility of cycle of this size to exist.

Rational approximation 
n/k

Convergent
number 

Cycle length
m = n + k

Computational
bound

R = 1/(2n/k-3) 
683,381,996,816,440 / 431,166,034,846,567 30. 1,114,548,031,663,007 1.07756 x 1029 
600,251,839,738,223 / 378,716,745,326,851 - 978,968,585,065,074 4.54238 x 1028 
517,121,682,660,006 / 326,267,455,807,135 - 843,389,138,467,141 2.57441 x 1028 

433,991,525,581,789 / 273,818,166,287,419 - 707,809,691,869,208 1.60979 x 1028 
350,861,368,503,572 / 221,368,876,767,703 - 572,230,245,271,275 1.03707 x 1028 

267,731,211,425,355 / 168,919,587,247,987 - 436,650,798,673,342 6.57741 x 1027 
184,601,054,347,138 / 116,470,297,728,271 - 301,071,352,075,409 3.88004 x 1027 
101,470,897,268,921 / 64,021,008,208,555 - 165,491,905,477,476 1.86358 x 1027 

18,340,740,190,704 / 11,571,718,688,839 28. 29,912,458,879,543 2.99088 x 1026 
8,573,543,875,303 / 5,409,303,924,479 26. 13,982,847,799,782 2.73493 x 1025 

7,379,891,435,205 / 4,656,193,084,598 - 12,036,084,519,803 8.39455 x 1024 
6,186,238,995,107 / 3,903,082,244,717 - 10,089,321,239,824 4.28181 x 1024 
4,992,586,555,009 / 3,149,971,404,836 - 8,142,557,959,845 2.48336 x 1024 

3,798,934,114,911 / 2,396,860,564,955 - 6,195,794,679,866 1.47471 x 1024 
2,605,281,674,813 / 1,643,749,725,074 - 4,249,031,399,887 8.29256 x 1023 

1,411,629,234,715 / 890,638,885,193 - 2,302,268,119,908 3.80765 x 1023 
217,976,794,617 / 137,528,045,312 24. 355,504,839,929 5.10126 x 1022 
114,208,327,604 / 72,057,431,991 - 186,265,759,595 4.35849 x 1021 
10,439,860,591 / 6,586,818,670 22. 17,026,679,261 2.16891 x 1020 

630,138,897 / 397,573,379 20. 1,027,712,276 1.25208 x 1018 
272,500,658 / 171,928,773 18. 444,429,431 3.20306 x 1016 
187,363,077 / 118,212,940 - 305,576,017 7.48875 x 1015 
102,225,496 / 64,497,107 - 166,722,603 2.46143 x 1015 
17,087,915 / 10,781,274 16. 27,869,189 2.94402 x 1014 

301,994 / 190,537 14. 492,531 9.84573 x 1011 
125,743 / 79,335 12. 205,078 7.21611 x 109 
75,235 / 47,468 - 122,703 1.44769 x 109 
24,727 / 15,601 10. 40,328 2.85818 x 108 
23,673 / 14,936 - 38,609 8.04976 x 107 

22,619 / 14,271 - 36,890 4.50889 x 107 
21,565 / 13,606 - 35,171 3.04065 x 107 
20,511 / 12,941 - 33,452 2.23726 x 107 
19,457 / 12,276 - 31,733 1.73049 x 107 
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18,403 / 11,611 - 30,014 1.38168 x 107 
17,349 / 10,946 - 28,295 1.12692 x 107 
16,295 / 10,281 - 26,576 9.32702 x 106 
15,241 / 9,616 - 24,857 7.79732 x 106 
14,187 / 8,951 - 23,138 6.56133 x 106 

13,133 / 8,286 - 21,419 5.54185 x 106 
12,079 / 7,621 - 19,700 4.68659 x 106 
11,025 / 6,956 - 17,981 3.95881 x 106 
9,971 / 6,291 - 16,262 3.33200 x 106 
8,917 / 5,626 - 14,543 2.78651 x 106 

7,863 / 4,961 - 12,824 2.30747 x 106 
6,809 / 4,296 - 11,105 1.88344 x 106 
5,755 / 3,631 - 9,386 1.50545 x 106 
4,701 / 2,966 - 7,667 1.16640 x 106 
3,647 / 2,301 - 5,948 860,564 

2,593 / 1,636 - 4,229 583,288 

1,539 / 971 - 2,510 330,750 
485 / 306 8. 791 99,781 
401 / 253 - 654 27,114 

317 / 200 - 517 12,825 
233 / 147 - 380 6,725 

149 / 94 - 243 3,343 
65 / 41 6. 106 1,193 
46 / 29 - 75 387 

27 / 17 - 44 147 
8 / 5 4. 13 32 

5 / 3 - 8 6 
2 2. 3 1 

Table 1: The best rational upper approximations to ln(3)/ln(2), the corresponding cycle 
length in 3x+1 problem and the bound for systematic computer verifications to eliminate 
this cycle length from the table. 

We can see from the table that in order to eliminate the possible existence of a cycle of length 
1,027,712,276  we should verify that  all  integers up to  1.25208 x 1018 converge.  The next 
possible value for cycle length would then be  17,026,679,261.

The table has been constructed in following way. First of all we computed first 30 terms in the 
continued fraction expansion for  ln(3)/ln(2).  The result is 

[1; 1, 1, 2 ,2, 3, 1, 5, 2, 23, 2, 23, 2 2, 1, 1, 55, 1, 4, 3, 1, 1, 15, 1, 9, 2, 5, 7, 1, 1 ,4, 8].

From  this  expansion  we  get  the  30.  convergent  for  ln(3)/ln(2),  which  is 
683,381,996,816,440/431,166,034,846,567.  Starting  from this  we  get  the  next  best  upper 
approximations  one  by  one  using  our  Mathematica  program  NextBestUpper.  All 
convergents having even order number between 10 and 30 appear in our table. That's natural 
because  from  the  theory  of  continued  fraction  expansions  it  is  generally  known  that  the 
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convergents are best rational approximations for the studied real number. Anyway, as we see 
from our table, they are not the only best approximations to a real number. For computing the 
last column value we have set equality on upper bound n/k=ln(3+1/R)/ln(2). Solving R we get 
R = 1/(2n/k-3). Because n/k is the best possible rational approximation for ln(3)/ln(2) we have 
used at least 100 digit precision in the computations of these bounds.

We have studied the Collatz problem for positive initial values. If we want to do the same for 
negative values also, we can define another integer sequence by defining bi=-ai for all positive 
integer values of  i. It is now easy to see, that for all i  we have  bi+1=3bi-1 if  bi+1 is odd and 
bi+1=bi/2 if bi+1 is even. If b1 is positive integer, all the iterates bi have positive integer values.

It is easy to see that our 3x-1 sequences have trivial cycles {1, 2}, {5, 14, 7, 20, 10} and {17,  
50, 25, 74, 37, 110, 55, 164, 82, 41, 122, 61, 182, 91, 272, 136, 68, 34, 17}.

Analogously to Lemma 1 we can prove the following result for 3x-1 problem.

LEMMA 6: Let us suppose that there exists an nontrivial cycle of length m in some 3x-1  
sequence (with positive initial value). Let k be the number of 3x-1 operations and n the number 
of x/2 operations in the cycle (Hence k+n=m). Suppose that the smallest number in sequence is  
greater than some (with a computer reachable bound) number R. Then

                                               
)2ln(

)13ln(
R

−
 ≤ 

k
n

 < )2ln(
)3ln(

. 

The following table gives best rational lower approximations for ln(3)/ln(2). As in table 1, if 
approximation  is  a  continued  fraction  convergent  its  order  number  is  given  in  the  second 
column. The third column gives the sum of the numerator and denominator of the rational 
approximation. This is the length of representing cycle of Collatz sequence. The last column 
gives the bound to be reached by computer calculations or by theoretical studies to eliminate 
the possibility of cycle of this size to exist.
 

Rational approximation 
n/k

Convergent
number 

Cycle length
m = n + k

Computational
bound

R = 1/(3-2n/k) 
83,130,157,078,217 / 52,449,289,519,716 29. 135,579,446,597,933 1.20960 x 1028

64,789,416,887,513 / 40,877,570,830,877 - 105,666,987,718,390 9.50064 x 1026

46,448,676,696,809 / 29,305,852,142,038 - 75,754,528,838,847 3.58630 x 1026

28,107,936,506,105 / 17,734,133,453,199 - 45,842,069,959,304 1.47286 x 1026

9,767,196,315,401 / 6,162,414,764,360 27. 15,929,611,079,761 3.87339 x 1025

1,193,652,440,098 / 753,110,839,881 25. 1,946,763,279,979 2.11025 x 1024

975,675,645,481 / 615,582,794,569 - 1,591,258,440,050 2.01643 x 1023

757,698,850,864 / 478,054,749,257 - 1,235,753,600,121 8.31572 x 1022

539,722,056,247 / 340,526,703,945 - 880,248,760,192 4.03240 x 1022

321,745,261,630 / 202,998,658,633 - 524,743,920,263 1.82213 x 1022
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103,768,467,013 / 65,470,613,321 23. 169,239,080,334 4.73167 x 1021

93,328,606,422 / 5,888,379,4651 - 152,212,401,073 1.33203 x 1021

82,888,745,831 / 52,296,975,981 - 135,185,721,812 7.01263 x 1020

72,448,885,240 / 45,710,157,311 - 118,159,042,551 4.35564 x 1020

62,009,024,649 / 39,123,338,641 - 101,132,363,290 2.89130 x 1020

51,569,164,058 / 32,536,519,971 - 84,105,684,029 1.96378 x 1020

41,129,303,467 / 25,949,701,301 - 67,079,004,768 1.32361 x 1020

30,689,442,876 / 19,362,882,631 - 50,052,325,507 8.55167 x 1019

20,249,582,285 / 12,776,063,961 - 33,025,646,246 4.97527 x 1019

9,809,721,694 / 6,189,245,291 21. 15,998,966,985 2.15533 x 1019

9,179,582,797 / 5,791,671,912 - 14,971,254,709 9.57790 x 1018

8,549,443,900 / 5,394,098,533 - 13,943,542,433 5.84903 x 1018

7,919,305,003 / 4,996,525,154 - 12,915,830,157 4.03027 x 1018

7,289,166,106 / 4,598,951,775 - 11,888,117,881 2.95319 x 1018

6,659,027,209 / 4,201,378,396 - 10,860,405,605 2.24096 x 1018

6,028,888,312 / 3,803,805,017 - 9,832,693,329 1.73505 x 1018

5,398,749,415 / 3,406,231,638 - 8,804,981,053 1.35714 x 1018

4,768,610,518 / 3,008,658,259 - 7,777,268,777 1.06411 x 1018

4,138,471,621 / 2,611,084,880 - 6,749,556,501 8.30251 x 1017

3,508,332,724 / 2,213,511,501 - 5,721,844,225 6.39288 x 1017

2,878,193,827 / 1,815,938,122 - 4,694,131,949 4.80408 x 1017

2,248,054,930 / 1,418,364,743 - 3,666,419,673 3.46152 x 1017

1,617,916,033 / 1,020,791,364 - 2,638,707,397 2.31207 x 1017

987,777,136 / 623,217,985 - 1,610,995,121 1.31687 x 1017

357,638,239 / 225,644,606 19. 583,282,845 4.46811 x 1016

85,137,581 / 53,715,833 17. 138,853,414 5.15618 x 1015

68,049,666 / 42,934,559 - 110,984,225 9.12750 x 1014

50,961,751 / 32,153,285 - 83,115,036 3.84335 x 1014

33,873,836 / 21,372,011 - 55,245,847 1.77685 x 1014

16,785,921 / 10,590,737 15. 27,376,658 6.74993 x 1013

16,483,927 / 10,400,200 - 26,884,127 2.96789 x 1013

16,181,933 / 10,209,663 - 26,391,596 1.87697 x 1013

15,879,939 / 10,019,126 - 25,899,065 1.35859 x 1013

15,577,945 / 9,828,589 - 25,406,534 1.05572 x 1013

15,275,951 / 9,638,052 - 24,914,003 8.57086 x 1012

14,973,957 / 9,447,515 - 24,421,472 7.16787 x 1012

14,671,963 / 9,256,978 - 23,928,941 6.12412 x 1012

14,369,969 / 9,066,441 - 23,436,410 5.31731 x 1012

14,067,975 / 8,875,904 - 22,943,879 4.67497 x 1012

13,765,981 / 8,685,367 - 22,451,348 4.15146 x 1012

13,463,987 / 8,494,830 - 21,958,817 3.71660 x 1012

13,161,993 / 8,304,293 - 21,466,286 3.34963 x 1012

12,859,999 / 8,113,756 - 20,973,755 3.03580 x 1012

12,558,005 / 7,923,219 - 20,481,224 2.76435 x 1012

12,256,011 / 7,732,682 - 19,988,693 2.52724 x 1012

11,954,017 / 7,542,145 - 19,496,162 2.31834 x 1012

11,652,023 / 7,351,608 - 19,003,631 2.13289 x 1012

11,350,029 / 7,161,071 - 18,511,100 1.96717 x 1012
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11,048,035 / 6,970,534 - 18,018,569 1.81817 x 1012

10746,041 / 6,779,997 - 17,526,038 1.68349 x 1012

10,444047 / 6,589,460 - 17,033,507 1.56116 x 1012

10,142,053 / 6,398,923 - 16,540,976 1.44956 x 1012

9,840,059 / 6,208,386 - 16,048,445 1.34733 x 1012

9,538,065 / 6,017,849 - 15,555,914 1.25335 x 1012

9,236,071 / 5,827,312 - 15,063,383 1.16664 x 1012

8,934,077 / 5,636,775 - 14,570,852 1.08641 x 1012

8,632,083 / 5,446,238 - 14,078,321 1.01194 x 1012

8,330,089 / 5,255,701 - 13,585,790 9.42637 x 1011

8,028,095 / 5,065,164 - 13,093,259 8.77989 x 1011

7,726,101 / 4,874,627 - 12,600,728 8.17537 x 1011

7,424,107 / 4,684,090 - 12,108,197 7.60887 x 1011

7,122,113 / 4,493,553 - 11,615,666 7.07689 x 1011

6,820,119 / 4,303,016 - 11,123,135 6.57638 x 1011

6,518,125 / 4,112,479 - 10,630,604 6.10462 x 1011

6,216,131 / 3,921,942 - 10,138,073 5.65922 x 1011

5,914,137 / 3,731,405 - 9,645,542 5.23801 x 1011

5,612,143 / 3,540,868 - 9,153,011 4.83908 x 1011

5,310,149 / 3,350,331 - 8,660,480 4.46072 x 1011

5,008,155 / 3,159,794 - 8,167,949 4.10135 x 1011

4,706,161 / 2,969,257 - 7,675,418 3.75960 x 1011

4,404,167 / 2,778,720 - 7,182,887 3.43420 x 1011

4,102,173 / 2,588,183 - 6,690,356 3.12400 x 1011

3,800,179 / 2,397,646 - 6,197,825 2.82796 x 1011

3,498,185 / 2,207,109 - 5,705,294 2.54513 x 1011

3,196,191 / 2,016,572 - 5,212,763 2.27466 x 1011

2,894,197 / 1,826,035 - 4,720,232 2.01573 x 1011

2,592,203 / 1,635,498 - 4,227,701 1.76764 x 1011

2,290,209 / 1,444,961 - 3,735,170 1.52971 x 1011

1,988,215 / 1,254,424 - 3,242,639 1.30134 x 1011

1,686,221 / 1,063,887 - 2,750,108 1.08196 x 1011

1,384,227 / 873,350 - 2,257,577 8.71037 x 1010

1,082,233 / 682,813 - 1,765,046 6.68110 x 1010

780,239 / 492,276 - 1,272,515 4.72725 x 1010

478,245 / 301,739 - 779,984 2.84469 x 1010

176,251 / 111,202 13. 287,453 1.02959 x 1010

50,508 / 31,867 11. 82,375 1.46214 x 109

25,781 / 16,266 - 42,047 2.12966 x 108

1,054 / 665 9. 1,719 5.07780 x 106

569 / 359 - 928 112,270
84 / 53 7. 137 8,461
19 / 12 5. 31 296
11 / 7 - 18 36
3 / 2 3. 5 6

1 1. 2 1
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Table 2: The best lower rational approximations to ln(3)/ln(2), the corresponding cycle 
length in 3x-1 problem and the bound for systematic computer verifications to eliminate this 
cycle length from the table. 

This table has been constructed in a way similar to table 1. First of all we take first 29 terms in 
the continued fraction expansion for ln(3)/ln(2). The result is
 
[1; 1, 1, 2 ,2, 3, 1, 5, 2, 23, 2, 23, 2 2, 1, 1, 55, 1, 4, 3, 1, 1, 15, 1, 9, 2, 5, 7, 1, 1 ,4].

From  this  expansion  we  get  the  29.  convergent  for  ln(3)/ln(2),  which  is 
83,130,157,078,217/52,449,289,519,716.  Starting  from  this  we  get  the  next  best  lower 
approximations  one  by  one  using  our  Mathematica  program  NextBestLower. All 
convergents  having odd order number  less  than or equal  to  29 appear  in  our  table.  That's 
natural because of from the theory of continued fraction expansions it is generally known that 
the convergents are best rational approximations for the studied real number. Anyway, as we 
see from our table, they are not the only best approximations to a real number. In order to 
compute  the  last  column  value  we  have  set  equality  on  lower  bound  n/k=ln(3-1/R)/ln(2). 
Solving  R from  this  we  get  R  =  1/(3-2n/k).  Because  n/k  is  the  best  possible  rational 
approximation  for  ln(3)/ln(2) we  have  used  used  at  least  100 digit  precision  in  the 
computations of these bounds.
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